Article

American Behavioral Scientist
I-18

Moving Behavioral
Experimentation Online:

Article reuse guidelines:

1 sagepub.com/journals-permissions

A TUtorlaI and Some DOgI: I:I’O.II77l(l)0027642|:’23I207O73
Recommendations for Drift fournals sagepub.com/home/abs
S Sage

Diffusion Modeling

Xuanjun Gong'2(®) and Richard Huskey'?*

Abstract

Behavioral science demands skillful experimentation and high-quality data that
are typically gathered in person. However, the COVID-19 pandemic forced many
behavioral research laboratories to close. Thankfully, new tools for conducting online
experiments allow researchers to elicit psychological responses and gather behavioral
data with unprecedented precision. It is now possible to quickly conduct large-scale
high-quality behavioral experiments online, even for studies designed to generate data
necessary for complex computational models. However, these techniques require
new skills that might be unfamiliar to behavioral researchers who are more familiar
with laboratory-based experimentation. We present a detailed tutorial introducing an
end-to-end build of an online experimental pipeline and corresponding data analysis.
We provide an example study investigating people’s media preferences using drift-
diffusion modeling (DDM), paying particular attention to potential issues that come
with online behavioral experimentation. This tutorial includes sample data and code
for conducting and analyzing DDM data gathered in an online experiment, thereby
mitigating the extent to which researchers must reinvent the wheel.
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Behavioral experimentation methods are usually practiced in laboratory-based settings
due to a need for highly accurate measurement hardware and software deployed in a
highly controlled environment. Laboratory-based experiments maximize internal valid-
ity and experimental control but come with the cost of relatively small samples, high
labor effort, and slow data collection times (for a review; Birnbaum, 2004). During the
COVID-19 pandemic, many in-person behavioral experiment laboratories were shut-
tered. Thankfully, web-based solutions allowed behavioral research to continue. Today,
even as opportunities for in-person data collection resume, researchers may wish to
continue online behavioral experimentation. Online behavioral experimentation allows
researchers to collect recorded behavioral data in programmed tasks, such as sequences
of perceptual or preferential selection of choices (Anwyl-Irvine et al., 2020), logged
mouse-tracking trajectories (Schoemann et al., 2021), and response time (RT) for mes-
sage processing (Wilcox et al., 2021) or decision-making (Ratcliff & Hendrickson,
2021). Thus, online behavioral experimentation enables complex experimental designs
and statistical modeling to examine within-subject and between-subject variation in
subjects’ behavioral tendencies and cognitive processing, such as executive function,
working memory, and decision-making. In addition, the declarative data from retro-
spective online survey studies have been challenged for the measurement discrepancy
between self-reported behavior and people’s actual real-life behaviors, which questions
the validity of only using self-report survey data as cognitive or behavioral indicators
(Parry et al., 2021). Thus, online behavioral experimentation should be considered an
important complement to survey-based methods to reveal people’s behavioral patterns
and underlying cognitive processes (Hainmueller et al., 2015).

In fact, there are multiple benefits of online behavioral experimentation. First, it
speeds up the data collection process significantly (Barbosa et al., 2022). Second, it
enables more diverse large-scale participant samples. Instead of requiring participants
to come in person to the laboratory, which often limits studies to convenience samples
of undergraduate students, online experiments can reach large national or international
participant samples, thereby increasing generalizability, and statistical power, and mak-
ing it more feasible to engage in subgroup analysis. Finally, online experiments are
highly compatible with open science practices (Dienlin et al., 2021). For example,
online behavioral experimentation platforms such as Pavlovia (https://pavlovia.org/)
provide hosting and code version control, which can easily be used in preregistrations
and materials sharing. These practices increase research transparency, reproducibility,
and replicability. Evidence is accumulating to show the validity and accuracy of online
behavioral experimentation data, which showed high replicability of bringing offline
laboratory-based results online (Bridges et al., 2020; Ratcliff & Hendrickson, 2021).
Thus, we expect the adoption of online experimentation methods will benefit behav-
1oral scientists in a wide range of research fields, such as cognitive psychology, behav-
ioral economics, computational social science, and communication.

Online behavioral experiments also come with several potential challenges, such as
potentially impaired data quality (Clifford & Jerit, 2014) and increased technical com-
plexity (Reips, 2002). Here, we introduce a pipeline for building a web-based behav-
ioral experiment for conducting a decision-making study using drift-diffusion
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modeling (DDM; Ratcliff & McKoon, 2008). We break the process down into a series
of seven steps, beginning with hypothesis formation and concluding with model inter-
pretation and including code for conducting an online DDM study and analyzing the
data.! We conclude with a discussion of methods for addressing data quality and issues
associated with online experimental designs. In what follows, we briefly introduce
DDM before explaining its application in online experiments.

Behavioral Modeling

One key component in behavioral experimentation is the analysis of collected behav-
ioral response data, such as choices and RTs. Modeling of behavioral response data
usually requires a hypothetical cognitive mechanism of the behavior-generating pro-
cess, in this example, a decision-making process. This unobservable cognitive deci-
sion-making process governs participants’ behaviors in the experimental paradigm
and produces observable behavioral data, which needs appropriate computational
modeling approaches to reveal the latent decision-making mechanism. Eventually, the
cognitive decision-making process helps researchers to answer a wide range of
research questions, including but not limited to consumption preferences or perceptual
judgment of different stimuli (Milosavljevic et al., 2010), the impact of individual dif-
ferences or experimental conditions on the decision-making process (Kowalczyk &
Grange, 2020), the underlying driving forces of people’s real-world judgments and
behaviors such as sharing of misinformation (Lin et al., 2023), and so on.

There are several benefits to behavioral modeling over alternative ways, such as
survey-measured behavioral indicators or frequency-measured behavioral indices. To
demonstrate, consider a researcher who is interested in studying why a person selects
one type of media content over another. Most of the research in this area usually asks
participants to report their media usage in a retrospective questionnaire or directly
observes participant media choices without measuring RTs (Hartmann, 2009).
However, these methods often fail to reveal the psychological processes driving selec-
tion, or why one type of media content is preferred over another (Knobloch-Westerwick,
2014), or fail to model stochasticity in choices independently from media preference
(Alos-Ferrer et al., 2021). Computational behavioral models can overcome these limi-
tations. Compared to statistical models of behavior, computational models provide a
better sense of trial-level behavioral data (Wilson & Collins, 2019), richer explanatory
power for the psychological processes that govern decision-making, as well as better
predictive inference (Clithero, 2018).

Another benefit is that computational models are often more statistically powerful
than frequency-based inference by accounting for the multi-modal behavioral varia-
tion of choices and RTs at trial, subject, and group levels (Stafford et al., 2020). For
instance, a simulated RT and choice dataset (N=200) shows that one class of compu-
tational decision-making models, the hierarchical Bayesian DDM (Ratcliftf & McKoon,
2008; Wiecki et al., 2013), has higher power to detect preferences (Supplemental
Figure S1A).? Across different model parameters, DDM has higher power compared
to a choice model using only choice frequencies (Supplemental Figure S1B).
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A related concern is that frequency-based inference potentially introduces bias to
hypothesis testing. People’s decision-making is a time-consuming and multi-stage
process (Ratcliff & McKoon, 2008). During different stages, the decision-maker
develops distinct reasonings and biases which combine together to produce the final
decision and execute the observed behavioral outcomes. However, a simplified and
incomplete analysis of the behavioral outcomes, for example, frequency-based infer-
ence, takes a holistic view of the decision-making process, thus ignoring the decision
biases developed in the initial stages of the decision-making. Consider a horror movie
fan deciding between watching a horror movie and a comedy movie. The decision-
making process might start with a bias against horror movies due to emotional avoid-
ance but eventually shift toward watching horror movies due to curiosity needs. In
short, a biased starting point away from the favored option will introduce the type II
error, and a biased starting point near the favored option will introduce the type I error.
Computational models can account for this by modeling bias, whereas this bias is not
accounted for with frequency-based approaches. In sum, when compared to frequency-
based methods, behavioral modeling offers more explanatory and statistical power.

The Drift Diffusion Model

DDM? (Ratcliff & McKoon, 2008), under Decision Theory (Dayan & Daw, 2008), is
one type of sequential sampling model (SSM), which offers a theoretical account of
how people decide among two or more options. SSMs (Ratcliff & McKoon, 2008) are
a class of computational decision-making models that account for people’s choices
and reaction time. SSMs treat decision-making as a process where decision-makers
sample option-favoring evidence and accumulate evidence to reach a decision thresh-
old. In the current manuscript, we focus on the DDM for decision-making studies.

DDM was initially developed to explain several characteristics commonly observed
in perceptual and memory-based decision-making tasks, including right-skewed RT
distributions, correct versus error choice frequencies, and the speed-accuracy trade-off
phenomenon (Ratcliff & McKoon, 2008). Later, studies found that DDM can be uti-
lized to explain a range of decision-making processes, such as value-based consump-
tion decisions (Milosavljevic et al., 2010), social decisions (Klauer et al., 2007), and
reinforcement learning processes (Ratcliff & Frank, 2012). In addition, recent studies
found DDM can be linked to neural signals, such as neural firing rate (Smith & Ratcliff,
2004), electroencephalography (EEG) signals (Ratcliff et al., 2009), and functional
magnetic resonance imaging signals (Bode et al., 2012). This evidence indicates that
DDM is a good algorithmic approximation of the actual decision-making processes
implemented by our brains.

DDM suggests people’s decision-making is an evidence or information accumula-
tion process with a constant drifting rate (Figure 1). Formally, for a two-choice value-
based decision process, the two options are represented by two decision boundaries
with the higher-value option as the upper boundary (a) and the lower-value option as
the lower boundary (0). The decision-making process will start from a starting point in
the middle of the two decision boundaries with or without preexisting decision bias (z)
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Figure 1. The DDM. The upper blue distribution is the observed decision RT for the
higher-value option (upper boundary) chosen, and the lower orange distribution is the
observed decision RT for the lower-value option (lower boundary) chosen.

favoring either option. Then, for each time step, the decision process will stochasti-
cally move upward to the upper boundary (higher-value option) or move down to the
lower boundary (lower-value option) with a constant drifiing rate (v) with random
noise. When the random walk reaches either one of the boundaries, the decision pro-
cess is complete and ready to be executed. The DDM also includes a non-decision time
(7) parameter and three variance parameters to account for the inter-trial variability of
the decision process (Ratcliff et al., 2016).

The four computational parameters (v, @, T, and Z) have unique conceptual opera-
tionalizations in a decision-making context. Non-decision time (T) encodes people’s
perceptual processing and representation of options as well as the time spent executing
a decision (e.g., clicking a button to make a decision). The length of the non-decision
time depends on the complexity of the presentation of options. For instance, image
presentations would require shorter perceptual processing compared to text presenta-
tions. This is because it should take longer to read a body of text compared to looking
at an image.

Decision boundaries (a, 0) account for people’s decision cautiousness with wider
decision boundaries (i.e., a larger difference between a and 0) representing stronger
caution in the decision-making process. More specifically, this parameter indexes the
speed/accuracy trade-off where a wider boundary represents slower, more cautious,
and therefore, more accurate decision-making, whereas a narrower boundary repre-
sents the opposite.
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Decision starting point (Z) accounts for people’s decision bias that is unrelated to
the valuation of the options itself. Bias might be driven by people’s ongoing prefer-
ences or non-choice characteristics. For instance, position order biases people’s choice
of web page selection for search engine results (Craswell et al., 2008) and people’s
decision to click on an advertisement (Agarwal et al., 2011) is biased by the position
of the content.

Finally, drift rate (v) accounts for the rate of evidence accumulation. Some deci-
sions may have an objectively correct option, as in a Stroop task. In such cases, the
drift rate accounts for the evidence participants collect to determine the objectively
correct option. By comparison, during value-based decision-making, the evidence
being accumulated is the value differences between the given options (Milosavljevic
et al., 2010). When the difference between the two options is small, the evidence accu-
mulation process will be slow; thus, the drift rate will be small in magnitude and
people’s choices will approach chance. By comparison, as the difference between two
choices increases, the evidence accumulation process will be fast, the drift rate will be
large in magnitude, and people’s choices will show a clear preference for one choice
over the other.

A unique set of DDM decision parameters will result in different reaction time
distributions and choice frequencies (Ratcliff & McKoon, 2008). For instance, while
keeping the drift rate and decision starting point constant, increasing the decision
boundary will spread and slow down RTs and increase the proportion of choices for
the objectively correct or higher-value option (Supplemental Figure S2A). On the
other hand, increasing only the drift rate will speed up RTs and increase the proportion
of choices choosing the higher-value option. Importantly, and unlike the impact of the
decision boundary, changes in drift rate have a stronger impact on the tail of the distri-
bution (0.9 quantiles) compared to the leading edge (0.1 quantiles) of the distribution
(Ratcliff & McKoon, 2008; Supplemental Figure S2B). Distinct from decision bound-
ary and drift rate, changes in decision bias will lead to a shifting of the RT distribution
toward the biased decision option (shorter RT for the biased option and longer RT for
the other option) and a dramatic influence on the proportions of choices (Supplemental
Figure S2C). Finally, non-decision time does not influence the proportion of choices
or the shape of the RT distribution, but only the length of RT in a way that increasing
non-decision time will lead to the increase of RT of the same amount value.

Challenges of Moving DDM Online

Several issues emerge from the application of DDM in online experimentation
approaches. First, DDM is a complex behavioral model with a relatively large number
of specified parameters. Thus, analyzing the complete set of parameters usually comes
with computational difficulties, especially when the sample size is large (as is com-
mon with online experiments). Moreover, not all DDM parameters are of interest to
every research question. For instance, non-decision time might not be of interest to
research investigating people’s consumption preferences for media content with dif-
ferent attributes. Similarly, inter-trial variability parameters might not be of interest in
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studies examining individual or group-level differences in decision-making processes.
As a result, researchers need to balance the parsimony and the completeness of DDM
(Lerche & Voss, 2016).

Second, DDM fits RTs and choice data gathered in well-controlled simple two-
option decision tasks, which often have limited external validity. Real-life decisions
usually include multiple options rather than two options, are often not made repeatedly
with the assumption of independence between each choice, and are usually not
speeded. Thus, researchers need to take special care in designing their decision tasks
and creating stimuli to simulate real-life decision scenarios.

Finally, to maximize the accuracy of model parameter estimation, DDM requires a
large number of decision trials in experiments which brings practical difficulties for
online experimentation due to concerns of participant motivation, distraction, fatigue,
and other data quality issues.

An End-to-End Pipeline for Conducting and Analyzing an
Online DDM Experiment

We aim to introduce a step-by-step tutorial for applying DDM in an online experiment.
Our examples are specific to fitting a hierarchical Bayesian DDM using the hierarchi-
cal drift-diffusion model (HDDM) package for Python (Wiecki et al., 2013), but have
similar applicability to other DDM estimation approaches, noting that alternative esti-
mation approaches often come with additional assumptions that might differ from
those specific to HDDM. To conduct an online DDM experiment, we need to design a
two-option decision task that collects choice and RT data. Generally, there are five
steps to designing the two-option decision task experiment and two steps to conduct-
ing the experiment and analyzing the data.

Step One: Hypothesis Formation

The first step is to characterize the decision problem based on research objectives. In
this step, researchers need to analyze the decision problem in real life and conceptual-
ize it at an abstract level. In this example, we consider why people might choose one
type of media content over another. Researchers need hypotheses about (1) what drives
people to make such media decisions (e.g., entertainment, information); (2) what are
the decision options (e.g., movies, videos, news articles); (3) how are options pre-
sented (e.g., movie poster images, textual plot summaries, video trailers); (4) what
attributes shape people’s choice (e.g., affect, novelty, social factors); (5) at which level
are the attributes evaluated (e.g., habitual, goal oriented); (6) what are the potential
gains (e.g., enjoyment, curiosity) and costs (e.g., time, money); and (7) how individual
differences and temporal states influence the decision (e.g., age, mood). Understanding
these questions will help researchers design a decision problem that is akin to deci-
sions in real life and maximize the efficacy of expressing the decision problem to
participants (Adamowicz et al., 1998).
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Step Two: Attribute Selection

The second step is attribute selection. Based on study objectives and media decision
characteristics, researchers need to choose media attributes of interest and specify the
levels of chosen attributes. For instance, if researchers are interested in how affective
media attributes influence people’s media preferences, then they might focus on
arousal and valence (Zillmann, 1988). Note that if multiple attributes are chosen, these
chosen attributes need to be as uncorrelated as possible, though this might be difficult
empirically (e.g., arousal and valence are often correlated). The chosen attributes can
be dummy coded, coded at multiple levels, or treated as continuous.

We recommend researchers minimize the number of attributes and levels in one
single experiment. This is because every possible option must be compared against
every other possible option, which can lead to rapid growth in the number of trials.* In

fact, the total number of unique decision types is (];r] as given in Equation (1):

NY_N-(N-D i
2 2

where M is the product of the number of cell levels.

Considering that properly powered decision-making experiments using HDDM can
often require anywhere between 40 and 80 unique trials per decision type to achieve
adequate power (Wiecki et al., 2013), factorial designs with several levels per factor
substantially inflate the number of unique stimuli that need to be created, validated,
and tested. This also extends the overall study duration and introduces participant
fatigue concerns.

Step Three: Task Design

The third step is to create the decision options and design the decision trials. Note that
the presentation format of the decision options needs to be simple since perceptual and
cognitive processing of the stimulus will increase non-decision time and inflate non-
decision time variability across trials, thereby dampening the estimation of DDM. We
recommend using images or short-length text for decision options, both of which are
easy to process and have good ecological validity (Supplemental Figure S3). To vali-
date the decision option stimuli, we recommend asking participants to rate the attri-
butes of the decision options to ensure that relevant attributes (e.g., arousal and
valence) vary as designed in an orthogonal way. This can be achieved via stimulus
pre-testing, as a manipulation check during the decision-making task, or (ideally)
both.

After creating the decision option set, researchers can randomly draw two decision
options from the decision option set to create a decision trial set. If multiple attributes
are included, researchers should consider constructing the decision set in a factorial
manner for all attributes as this facilitates analysis using linear modeling which esti-
mates both the main effects for each attribute and the interaction between attributes.
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Step Four: Task Programming

The fourth step 1s to design and implement the experiment. Here, researchers need to
deliver the decision trials to participants in an experimental setting optimized for col-
lecting choice and RT data. PsychoPy and PsycholS are particularly suited for creating
offline (PsychoPy) and online (PsycholJs) behavioral experiments like DDM.
Advantages of each include (1) precise timing for measuring RT and presenting stim-
uli (Bridges et al., 2020); (2) hybrid methods comprising both an easy-to-use graphic
user interface and access to the underlying code which gives high flexibility when
creating the experimental logic; and (3) beginner-friendly demo libraries and good
community support. We focus on PsycholS, a java-script counterpart of the Python-
based PsychoPy (Peirce et al., 2019). Implementing an experiment in either consists of
three main components: initiating the experiment and defining stimuli, building exper-
iment logistics in the experiment scheduler, and constructing routines.

To begin, researchers need to prepare the experiment stimuli, such as experiment
instructions and visual/audio stimuli. The PsycholS library provides a list of stimuli
protocols, such as texts, shapes, images, soundtracks, or videos, and researchers need
to specify the desired attributes for needed stimuli, such as content, color, position, or
duration. In addition, researchers also need to define a list of necessary sensors to
capture participants’ behavioral response data, which automatically record response
data like participants’ keyboard presses or mouse movements.

Next, researchers need to build the logistics of the experiment, including the loops
and transitions between sessions. Most experiments require multiple sessions such as
instructions, training, induction, and measurement. These sessions need to be con-
nected to define a triggered transition (e.g., keyboard press, timed transition). Each
session, or block of sessions, can be reused by defining session loops. For instance,
decision-making experiments demand repeated measures of response data in different
decision tasks. The experimenter can specify a decision session and then repeat the
sessions with varying stimuli via a loop.

Finally, researchers need to construct the routines for each experiment session.
Depending on the purpose of the specific session, the timing and duration of the stim-
uli presentation and behavioral response sensors should be well specified. For instance,
a typical cognitive experiment test session would normally start with a short presenta-
tion of a fixation cross stimulus to concentrate participants’ eye gaze on the center of
the screen, followed by the experiment stimuli and keyboard pressing sensors.

Step Five: Power Analysis

The fifth step is to conduct a power analysis. This is determined both by the number of
trials and the sample size. The number of trials per decision type is determined by the
expected effect size and desired power level where power increases as the number of
trials increases. For instance, 20 trials per decision type is the minimum required to
accurately estimate DDM parameters, which gives power at 0.6 if the effect size is 0.3,
and power at 0.8 if the effect size is 0.5 (Wiecki et al., 2013).
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Sample size also impacts the accuracy of DDM estimation (Wiecki et al., 2013) and
the capacity to detect a difference in parameters (Lerche et al., 2017). For instance, to
reach the desired power at 0.6 to detect a significant within-subject main effect of deci-
sion type on a decision parameter, ~30 participants will be needed (Wiecki et al.,
2013). When testing hypotheses using a regular linear model, researchers can estimate
how many participants are needed by simulating RT datasets with varying participant
sizes and trial sizes, then fitting a DDM with the simulated datasets and calculating the
probability of detecting an effect. The HDDM package has a simulation tool that
allows for such an analysis.

Step Six: Online Experimental Pipeline

Traditionally, behavioral experiments such as DDM were conducted in a university
research laboratory. As a result, many behavioral experiments feature convenience
samples of college students. By moving behavioral experiments online, it becomes
possible to recruit a large number of subjects from the general population, thereby
increasing a study’s generalizability. Accordingly, we focus on the steps necessary to
build and implement an online DDM experimental paradigm. The design pipeline for
an online behavioral experiment has three steps: building the experimental procedure
(discussed above), hosting the experiment on a server, and recruiting participants
(Sauter et al., 2020).

When hosting the experiment on a web server, researchers can choose their own
private server, which offers maximum flexibility but requires high expertise to main-
tain, or a public server such as Pavlovia (https://pavlovia.org/), which consumes mon-
etary credit for each completed participant. For smaller laboratories, we recommend
using a public hosting server because it maintains the experimental code, allows source
version control using GitLab, stores the collected data automatically, and reduces the
effort required to maintain a private server.

The next step is recruiting participants. Researchers can recruit subjects as normal,
via student sample platforms, such as SONA, or crowdsourcing platforms, such as
M-Turk or Prolific Academic. If the target sample size is large and research resources
allow, we recommend researchers consider data collection on crowdsourcing plat-
forms due to faster data collection and more diverse participant samples. Regardless,
the recruiting speed of online experiments with student samples is still much faster
than offline laboratory experiments given that researchers are not constrained by the
size of their laboratory.

Finally, researchers need to link each step in the pipeline with hyperlinks that trans-
fer participants’ identification information through keys in the URL. An example study
might consist of five components, SONA-Qualtrics-Pavlovia-Qualtrics-SONA
(SQPQS), connected by a redirecting URL (Figure 2). The data are automatically
stored as a comma-separated values (CSV) file on Pavlovia’s online server and can be
downloaded for analysis.
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Figure 2. Online experimental pipeline for redirecting participants.

Step Seven: Model Fitting and Interpretation

The seventh step is to estimate the DDM. Multiple methods exist for fitting the DDM
and estimating the parameters for hypothesis testing. There are three main approaches
to estimate DDM, or generally any experimental behavioral model, which are quan-
tile-based methods, maximum likelihood estimation (MLE), and a Bayesian approach.
Quantile-based methods first summarize the collected RT data as quantiles (ranging
from 0.1 to 0.9 quantiles), then use the extracted quantiles to compute goodness-of-fit
measures for the model (i.e., chi-square value), and finally find the set of parameters
values which maximize goodness-of-fit by minimizing the Chi-square measures
(Rateliff & McKoon, 2008). A quantile-based method is the simplest solution to esti-
mate a DDM but usually performs the worst compared to other methods (Wiecki et al.,
2013). Both MLE methods and Bayesian approaches use all RT data instead of sub-
tracted quantile data summaries. Specifically, MLE methods compute the likelihood
function of model parameters given observed RT data using the probability density
function of RT distributions. Later, this likelihood function will be maximized, which
produces the best-fit parameter values (Shinn et al., 2020). The Bayesian approach
takes a similar step to calculate the likelihood function, but instead of maximizing the
likelihood function, it uses the Bayes rule to compute the posterior probability of
parameters using the likelthood function and the predefined prior distributions of
parameters. One main difference between MLE and Bayesian approaches is that, with-
out additional frequentist assumptions on the errors, MLE can only output point esti-
mates of parameters (a singular value), but Bayesian approaches can generate the
probability distributions of the parameters (Wiecki et al.,, 2013), which benefits
researchers for hypothesis testing, data simulation, and making inferences, including
inferences about null results (Kruschke, 2013).

Here we introduce a Bayesian approach using an HDDM (Wiecki et al., 2013),
which has several advantages in that HDDM: (1) minimizes the required trial size to
reach the same level of power; (2) offers a Bayesian approach that treats parameters as
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variables rather than a fixed number, thereby providing information about both the
parameter estimates and the uncertainty of the estimates (i.e., the posterior probability
distribution for parameter estimates); and (3) allows researchers to accept the null and
falsify hypotheses by providing the explicit posterior distributions of parameters
(Kruschke, 2013). In Supplemental Material Section 1, we give a detailed tutorial with
code to estimate DDM using the HDDM package for interested readers.

In detail, HDDM (Supplemental Figure S4) specifies that the subject-level decision
parameters (v, ¢, a, and z) are variables drawn from the group-level variables, and fol-
low distributions governed by group-level parameters (uv,crv,ul,cs,,ua,ca, uz,csz).
Thus, the estimates of the individual-level parameters are constrained by the group-
level estimates and gradually update the group-level parameter estimates (Shiffrin
et al., 2008). Then the posterior distribution of the group-level parameters is estimated
using a Monte Carlo Markov chain method, which is a parameter sampling algorithm
commonly used for Bayesian approaches (Gamerman & Lopes, 2014), with prior dis-
tributions of the group-level parameters and the likelihood of the observed RT data
(positive/negative if choice is high/low value option) as a function of the subject-level
decision parameters (Navarro & Fuss, 2009). In addition, due to the common existence
of fast RT contaminates in the RT data,” HDDM specifies a generative model for RT
as a mixture model with a fixed probability (usually set to 0.05) of RTs coming from a
uniform distribution of RT contaminants, and the remaining probability of RTs coming
from the drift-diffusion process.

For each decision condition, such as the media decision type (i.e., attribute differ-
ence between the two media options), HDDM can separately estimate the specified
group-level parameters (Supplemental Figure S4). Bayesian inference testing can be
conducted using the posterior distributions of the group-level mean parameters
(Hme Hy :Hz) for each condition against the null value and constructing the highest
density interval (HDI) to determine the credibility of parameter values relative to the
null value (Kruschke, 2013). For instance, if a researcher hypothesizes a positive
group-level parameter value (equivalent to a one-tailed test), specifies zero as the null
value and 95% as a threshold, then they will interpret their result as “credible” if
=>95% of the HDI is >0.°

After DDM model fitting, the resulting posterior distributions will encode the effects
of specified attributes on the decision parameters (i.e., mean or mode of the posterior
distribution) as well as the uncertainty of the estimation (variance of the posterior dis-
tribution), which can be shown in Supplemental Figure S5. In our example, a positive
effect for drift rate indicates a preference toward a high attribute value option, and a
negative effect for drift rate indicates a preference toward a low attribute value option.

Concerns and Suggestions

Researchers might worry about the data quality of online behavioral experiments.
Historically, laboratory-based research studies have allowed researchers to mitigate,
or otherwise control for, numerous factors (e.g., heterogeneous computer hardware,
participant distraction) that are difficult to deal with in online studies (Reips, 2002).
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Below, we provide some strategies for mitigating these concerns and solutions for
diagnosing them in your data.

One of the major concerns is the accuracy of RT measures. Benchmarking research
(Bridges et al., 2020) shows that PsychoJS has as good as (or better) timing accuracy
(~3.5ms) relative to most other experimental software (~10ms), even after accounting
for the substantial heterogeneity introduced by participant's own computers.

Mitigating participant distraction requires considerable care. During any behav-
ioral experiment, and especially during online behavioral experiments, participant
fatigue and loss of interest can introduce speeding trends or autocorrelation in partici-
pants’ RT data across trials. This is an important concern since DDM usually assumes
the observed data are iid (i.e., identical and independently distributed).

To address this concern, we first recommend piloting the experiment and tracking
the time it takes participants to complete the study. Participants who complete online
experiments often experience more distractions and pay less attention; therefore,
short-duration online experiments are recommended (Sauter et al., 2020). It is not
uncommon to see a long-tailed time-to-complete distribution with slow outliers.
Despite this skew, in a recent study we conducted, the study time-to-complete distribu-
tion was centered about 50 minutes, which is roughly how long we expected the task
to take (Supplemental Figure S6A). Time-to-complete data are a proxy for participant
distraction; participants with exceptionally fast or slow time-to-complete metrics
should be removed from further analysis. To help mitigate participant fatigue, distrac-
tion, and attrition, we recommend that experiments be kept as short as possible while
also maintaining statistical power.

Another marker of distraction is a speeding trend across trials of the experiment.
Distracted or fatigued participants might speed up their responses in an attempt to
more quickly end the experiment. Speeding trends can be checked by correlating trial
number and RT. As shown in Supplemental Figure S6B, a small (but negligible) speed-
ing trend is observed in empirical data. Block designs can help mitigate this trend. We
have found it particularly useful to give participants a short break between blocks,
which has helped mitigate fatigue, speeding, and attrition. In fact, it appears that par-
ticipant RT is contingent on the block design of the experiment. In a study we recently
completed, RTs for each trial (Supplemental Figure S6C) and the autocorrelation of
RTs across trials (Supplemental Figure S6D) show that the RT periodically decreases
within each block, but RTs are brought back up by the break between blocks.

Finally, it is necessary to specify the exclusion criterion for failed participants and
trials. We suggest including these criteria, along with data cleaning and inference pro-
cedures in a preregistration (Dienlin et al., 2021).

Conclusion

In this manuscript, we provided step-by-step guidance, along with sample code, for
conducting and analyzing DDM studies collected via an online experiment. We pro-
vide some examples of ways to diagnose and mitigate potential concerns associated
with online behavioral data collection. We hope that this helps other laboratories
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implement the DDM in their own research, mitigates the extent to which they must
reinvent the wheel when developing these experimental paradigms in online contexts,
and ultimately allows for the application of more complete explanations of human
behavior (Huskey et al., 2020), including pressing challenges related to COVID-19
and beyond (see Supplemental Material Section 2).
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Notes

1. Code from an exemplar project can be found at https://github.com/cogcommscience-lab/
movie_selection

2. For a supplemental file, including figures and extended materials, see https://osf.io/skpwt/

3. For those new to computationally modeling decision-making, we recommend DDM over
competing models because of the availability of various easy-to-use tools to fit the model as
well as the DDM’s capacity to be extended to account for things like eye-fixation (Krajbich
etal., 2012) and reinforcement learning process (Ratcliff & Frank, 2012), both of which are
important components of decision-making processes.

4. Inour example, if in a 2 X 2 design, there are six MECE decision types. Importantly, some
decision types are equivalent and therefore can be reduced based on the difference between
the two choices.

5. Fast contaminants are fatal to DDM estimation if not treated appropriately, because the
probability of an RT faster than non-decision time is 0, which dramatically biases the esti-
mation of non-decision time. Therefore, proper cleaning of RTs, including the removal of
slow and fast outliers (see Ratcliff, 1993) is vital.

6. To maintain a 95% threshold for a non-directional hypothesis (i.e., the group-level param-
eter # 0), the researcher would require 97.5% of the HDI to be different from zero (equiva-
lent to a two-tailed test).
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