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Abstract 
Existing media-selection theories predominantly consider media selection at a static moment-in-time. However, such theorizing is out-of-step 
with today’s media landscape, which is dominated by sequential media consumption where future media selection is dependent on previously 
selected media. Ignoring the dependencies among sequential media selection leads to a failure to theorize and model the time-evolving nature 
of media selection. To bridge this gap, we review computational modeling methods and offer an integrative theoretical framework for studying 
sequential media selection. In doing so, we lay the theoretical and methodological foundation necessary for state-of-the-art research focused on 
understanding the underlying mechanisms of, and sequential dependencies among, media selection. Our sequential media-selection 
framework helps media researchers by theorizing and formalizing processes related to learning, exploration vs. exploitation, and foraging. 
The outcome is a manuscript that builds on existing theory and research to offer a roadmap for next-generation media-selection inquiry.
Keywords: media selection, computational modeling, reinforcement learning, exploration/exploitation, foraging. 

Media shapes people’s minds (Weber et al., 2015; Schm€alzle, 
2022 ), psychological well-being (Ostic et al., 2021; Xu et al., 
2016), beliefs (Anspach & Carlson, 2020; Veenstra et al., 
2014), and behaviors (Nabi & Oliver, 2009), as well as soci
ety more broadly (Perse & Lambe, 2016). People’s selective 
exposure to content determines how media influences audien
ces. Thus, it is crucially important to understand how and 
why people select different types of media. This is because a 
better understanding of media selection helps researchers and 
practitioners generate more effective campaign strategies, 
more accurate estimates of media effects, and more compre
hensive understanding of the media economy more broadly. 
In summary, if we are going to understand the causal process 
of media content ! media reception ! media effects 
(Schm€alzle & Huskey, 2023), then we must understand how 
and why people select media in the first place.

Existing theories explore how media content and audience 
characteristics impact media selection. These theories almost 
universally specify media selection as a singular, snapshot, 
decision-making event (Figure 1A). Research within this par
adigm has revealed hard-won insights into mechanisms that 
govern media selection (for a review, see Hartmann, 2009). 
At the same time, we know that media selection happens in a 
dynamic environment, and that media preferences systemati
cally vary over time (Shade et al., 2015). Therefore, any 
mechanistic explanation of media selection that does not con
sider the time dimension is necessarily incomplete.

To bridge this gap, we theoretically integrate well- 
documented mechanisms of media selection with decision theo
retic models of sequential choice (Figure 1B). Our article begins 
by briefly reviewing existing frameworks for studying static me
dia selection with a particular focus on well-studied 

mechanisms. Subsequently, we consider how these mechanisms 
can be extended to account for sequential media selection using 
five different decision theoretic computational models: Markov 
chain (MC) and Markov decision process (MDP), reinforcement 
learning (RL), exploration exploitation (EE), and optimal forag
ing theory (OFT). In these sections, we pay particular attention 
to each model’s assumptions and how these assumptions unlock 
new ways of studying sequential media selection. We conclude 
with suggestions for researchers looking to develop and test 
new theories using these computational approaches.

Content and audience characteristics govern 
static media selection
Media selection theories consider people’s media choice as a 
static selection problem (Sears & Freedman, 1967); that is, 
why people prefer one type of media content over alternatives 
in a static decision-making scenario. This process is typically 
understood as a type of selective exposure. Selective exposure 
is a rather broad term that has been explored across a num
ber of different domains (for reviews, see Knobloch- 
Westerwick, 2014; Sears & Freedman, 1967). Therefore, we 
draw on a narrower definition and characterize selective ex
posure as media selection “behavior that is deliberately per
formed to attain and sustain perceptual control of particular 
stimulus events” (Zillmann & Bryant, 2013, p. 2).

A number of theoretical models have been proposed in or
der to explain media selection. Among the oldest, mood man
agement theory (MMT) suggests that media selection is a 
function of people’s affective state and media content’s affec
tive characteristics (Zillmann, 2000). As a normative theory 
from a hedonistic perspective, MMT hypothesizes that 
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humans are rational optimizers of pleasant feelings; there
fore, people choose media content that maximizes happiness. 
Decades of research demonstrate that affective characteristics 
(i.e., arousal, valence) shape people’s media selection, but in 
ways that somewhat deviate from MMT’s original hypothe
ses (Carpentier, 2020; Gong et al., 2023; Nabi, 2020).

Besides affective characteristics, Atkin (1973) suggests that 
information utility, referred to as the perceived usefulness of 
information for fulfilling a goal, largely determines media se
lection behavior. Different from the hedonistic perspective, 
information utility theory adopts a utilitarian framework and 
argues that information-seeking media selection is driven by 
extrinsic motivation. Supporting these claims, informational 
features explain people’s news consumption and health mes
sage exposure (Knobloch-Westerwick et al., 2005). 
Moreover, intrinsic motivations for autonomy, competence, 
and relatedness appear to govern people’s media selection 
behaviors (Reinecke et al., 2012).

Collectively, these theoretical explanations demonstrate 
that media content (e.g., affect, utility) and audience charac
teristics (e.g., affect, motivation) govern media selection.1 

However, the integrative linkages between these theoretical 
explanations are not immediately clear as they are usually in
vestigated independently rather than under a common theo
retical and analytical framework.

Meta-theoretic frameworks suggest computational 
models govern media selection
Uses and gratifications (U&G) is a framework for integrating 
content and audience characteristics (Katz et al., 1973). 
U&G suggests that individuals are goal-oriented and driven 
by specific needs and gratifications, which are actively sought 
from media (Ruggiero, 2000). These needs and correspond
ing gratifications can be categorized into multiple classes, in
cluding cognitive needs, affective needs, personal identity, 

social interaction, escapism, and habitual needs (Katz et al., 
1973). Insightfully, U&G recognizes that individuals are 
gratification seekers and needs satisfiers who choose media 
content that is expected to optimally satisfy perceived needs 
(Jensen & Rosengren, 1990; McQuail, 1997). This hints that 
people select media based on an internal algorithmic model 
that estimates anticipated gratifications from different media 
options based on an individual’s needs.

Unlike U&G, which uses a discrete categorization of media 
gratifications, expectancy value theory (EVT) suggests that 
media choices are determined by the expected value of media 
options (Fishbein & Ajzen, 1975). Expected value is a func
tion of the estimated likelihood of instrumental and experien
tial outcomes multiplied by the subjective valuation of each 
outcome. Thus, EVT offers an algorithmic explanation of 
media selection that maps perceived media features with an 
individual’s internal mental states into a singular valuation. 
Crucially, both U&G and EVT verbally specify, but never 
computationally formalize, the algorithmic steps that govern 
the generative process of granular media selection behavior. 
Computational models (Guest & Martin, 2021; Smaldino, 
2020) are one way of mathematically formalizing an algorith
mic model.

Initial theorizing (Fisher & Hamilton, 2021) has computa
tionally formalized the algorithmic models that govern media 
selection as a type of value-based decision making (Rangel 
et al., 2008). Value-based decision making involves three 
stages—option representation, option valuation, and option 
selection. In media selection contexts, media options are rep
resented as a set of content characteristics (e.g., affect, util
ity), which are evaluated depending on a set of audience 
characteristics (e.g., affect, motivation). A valuation function 
integrates these characteristics to form a singular subjective 
value for each option such that higher value indicates stron
ger preference (Figure 1A; Levy & Glimcher, 2012). 

Figure 1. (A) Static media-selection theories suggest that media choices are determined by the interaction between media content characteristics (e.g., 
valence, arousal, information utility, media use) and audience characteristics (e.g., gender, mood, gratifications sought). (B) Theorizing sequential media 
selection suggests that media choices are also heavily dependent on previously chosen choices. Specifically, previous media choices might change 
people’s mood state, help people learn the expected value of a specific type of media option, induce boredom, elicit a bias against choosing similar 
media options, and guide people to explore novel media messages. A key distinction between static media selection and sequential media selection is 
that sequential media selection considers the time dimension of media choices and aims to understand the temporal dependencies among sequential 
media choices.
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Subsequently, the subjective values for each option are com
pared. This comparison yields an outcome such that the 
higher value media option, or the option that will result in 
greater reward, has a higher probability of being selected 
(Gong & Huskey, in press).

Integrating verbal theories and computational 
models to explain static media selection
It is possible to integrate existing media-selection mechanisms 
with computational value-based decision-making models. Let 
us begin by specifying a domain-general valuation function 
(Equation 1; Roberts & Hutcherson, 2019). We then account 
for existing media-selection mechanisms that specify content 
and audience characteristics by including each as terms in 
the function. 

V F; Sð Þ ¼ b1Fþ b2Sþ b3F � S : (1) 

In this function, the subjective value (V) of a media option 
(e.g., a movie) is a function of an individual’s perceptions of a 
media option’s features (F; content characteristics) and an 
individual’s current state (S; audience characteristics). How 
should we operationalize the parameters in this function? We 
can turn to existing theory for answers. For example, MMT 
specifies how affective (operationalized in terms of arousal 
and valence) media features and an individual’s affective state 
together explain media selection. Drawing on MMT, it is 
possible to express the value people attribute to a given media 
option as a linear combination of affective characteristics of 
media content features and the audience’s current mood 
state (Equation 2).2 

Voption ¼ b0 þ b1MovieValenceþ b2MovieArousal
þb3MoodValenceþb4MoodArousal

b5MovieValence �MoodValence
þb6MovieArousal �MoodArousal þ E:

(2) 

After media options are evaluated by the subjective valua
tion function (e.g., Equation 2), people are expected to select 
the media option, from an array of options, with the highest 
subjective value. In the simplest case, a two-choice decision, 
it is possible to formalize this as: 

MediaSelection ¼ f VoptionA � VoptionB
� �

: (3) 

As a first start, this exact formalization of MMT has been 
empirically tested (Gong et al., 2023) using a computational 
drift diffusion model (DDM; Ratcliff, & McKoon, 2007). 
However, one core limitation of this project, and the DDM 
more generally, is that each choice is represented as a static 
decision. In what follows, we discuss how to account for the 
time dimension.

Theorizing and computationally modeling 
sequential media selection
People’s media selection depends on previously selected me
dia (Gong & Huskey, 2023). In fact, people’s media selec
tion, such as music listening, web browsing, Wikipedia 
reading, and social media engagement can be explained and 
predicted by people’s previous media-selection histories 
(Gong & Huskey, 2023; Lindstr€om et al., 2021; Lydon- 

Staley et al., 2020; Tria et al., 2014). Existing theory and re
search largely ignores this temporal dependency. Therefore, 
our understanding of people’s media selection is necessarily 
incomplete. In this section, we discuss approaches that ac
count for temporal dependencies in media selection and pro
vide theoretical extensions that increase our understanding of 
people’s sequential media selection.3

As previously demonstrated, people’s media selection can 
be understood as a value-based decision-making process 
where the value of media options is a function of media con
tent and audience characteristics (Equation 1). Arguably, au
dience characteristics, particularly an individual’s mental 
state, are not stationary but instead vary from decision to de
cision, and are influenced by preceding media choices. For ex
ample, MMT proposes that media selection depends on 
people’s mood state and media’s affective features. 
Importantly, previously selected media may influence an indi
vidual’s mood state, which will consequently influence their 
subsequent evaluation of media options and impact their sub
sequent media selection (Figure 1B). This temporal depen
dency between media effects and media selection (Fisher & 
Hamilton, 2021) lays the foundation for our argument about 
sequential media selection.

In order to understand sequential media selection, we need 
to clearly specify its dynamic nature. Accordingly, we define 
sequential media selection as a series of media decisions 
where (1) the decisions are not independent and (2) the state 
of the decision-maker changes as a consequence of previous 
choices (Brehmer, 1992). Formally, sequential media choices 
can be defined as a sequence: < C1;C2; . . . ; Ct >, where Ct 
denotes the media choice C at time t. We can also define the 
temporal dependency between sequential media choices 
as follows: 

P CtjCt� 1; Ct� 2; . . .ð Þ 6¼ P Ctð Þ: (4) 

This shows that the conditional probability of choosing an 
option at a specific time point (Ct) depends on previous 
choices (Ct� 1, Ct� 2, … ) and, therefore, is not equal to the 
marginal probability of choosing the option P Ctð Þ. Said dif
ferently, the probability that an individual will select a given 
media choice in a static media-selection context is not the 
same as the probability that an individual will select a given 
media choice in a sequential media-selection context.

This dynamic structure of sequential media choices can be 
described in semantic and temporal dimensions. In the se
mantic dimension, researchers study the semantic distribution 
of what people choose in a choice sequence. For instance, 
someone listening to music might choose to listen to a seman
tically similar (e.g., song from the same artist) or dissimilar 
(e.g., song from a different artist) song relative to previously 
listened-to songs. This behavior has been explained using a 
novelty-driven probability model (Tria et al., 2014). In the 
temporal dimension, researchers can study the temporal dis
tribution of when people choose a specific media option. For 
instance, the time frequency of people’s social media posting 
can be explained by the amount of social rewards (e.g., num
ber of “likes”) received from previous posts, such that the 
more “likes” people receive, the faster people will make their 
future posts (Lindstr€om et al., 2021).

In general, semantic dimensions of sequential media 
choices answer questions about what is selected, and the tem
poral dimension answers questions about when selection 
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occurs. Both can be computationally modeled as a value- 
based decision-making process. The next question is how can 
we model the time-varying dependency of sequential media 
choices?4 There are two main approaches in the decision- 
making literature to address this question: descriptive models 
and normative models (Bell et al., 1988). Descriptive models 
are a data-driven approach aiming to model what people ac
tually choose. These are particularly useful for theory genera
tion. On the other hand, normative models assume that 
people are value optimizers, and thus aim to answer selection 
questions after accounting for cost/benefit tradeoffs. Unlike 
descriptive models, normative models are confirmatory in na
ture, and require strong hypotheses. Drawing from both 
approaches, we now propose several models for investigating 
sequential media selection.

Descriptive modeling: MC and MDP
The model and its assumptions
We have demonstrated the dependency between media effects 
and media choices that governs sequential media selection. 
MC models (Vermeer and Trilling, 2020) are one way of ac
counting for this dependency, with some simplifying assump
tions. Instead of modeling all prior media selection (as in 
Equation 4), MC models assume that media selection (Ct) 
depends only on the immediately preceding choice (Ct−1), as 
shown in Equation (5). 

P CtjCt� 1; Ct� 2; . . .ð Þ ¼ P CtjCt� 1ð Þ: (5) 

This simplifying assumption accounts for the media effect/ 
subsequent-choice dependency described above. How? In 
short, the probabilistic distribution of an individual’s current 
selection (e.g., watching a crime movie) is assumed to depend 
only on the previously selected media option (e.g., previously 
viewed movies; Figure 2A). Therefore, the stochastic transi
tion process between media choices can be descriptively mod
eled by the conditional probability PðCjC0Þ, indicating the 
transition probability from choice C0 to C. Empirically, this 
MC framework has been successfully used as a descriptive 
model for a set of complex sequential human behaviors, in
cluding people’s sequential media selection (Gong & 
Huskey, 2023).

One limitation of MC models is that they do not explicitly 
account for the interaction between selection and the effect 
(the psychological state resulting from a choice). MDP 
(Figure 2B; Sutton & Barto, 2018) address this limitation by 
specifying three interactive components: choice (C), state (S), 
and a reward function of the coupled choice and state 
Q Ct; Stð Þð Þ. In detail, the reward function is defined as the 

expected value (E) of reward (Rt) after choosing an option 
(C) given the current state (St; Equation 6). The option (Ct) 
that maximizes the reward function will be chosen 
(Equation 7), which results in a future state (Stþ1) and state 
transition probability (P(Stþ1); Equation 8). 

Q C; Stð Þ ¼ E Rt jC; Stð Þ: (6) 

Ct ¼ argmax
C

Q C; Stð Þð Þ: (7) 

P Stþ1ð Þ ¼ P Stþ1jSt; Ctð Þ: (8) 

Unlike MC that specifies the choice distribution as gov
erned by the conditional probability PðCjC0Þ, MDP suggests 
that the choice distribution is determined by both previous 
choices and previous states, governed by a reward function, 
and the state transition probability.

The model as applied to sequential media selection
How might this approach be used to examine sequential me
dia selection? Consider a scenario with three media options 
(e.g., comedy, crime, affectively neutral). A simple MC model 
could be used to estimate the sequential movie selection pro
cess as shown in Figure 2A. In this example, the MC model 
will analyze the sequential dependencies of media selection 
by estimating the conditional transition probabilities, such as 
the probability of watching a crime movie after watching a 
crime movie, comedy movie, or action movie. This content- 
focused data-driven approach may serve as a foundation for 
theory building. If consistent transitions are observed across 
a range of media, then it may be possible to theorize general
izable mechanisms that account for, or explain, these transi
tion probabilities (Vermeer & Trilling, 2020).

Figure 2. The MC model (A) assumes that future media choices are only determined by the immediately preceding media choice. For instance, 
considering three media options (i.e., crime movie, comedy movie, action movie), the MC model will quantify the conditional transition probabilities of 
choosing a crime movie after having watched a comedy movie or action movie. By comparison, the MDP model (B) adds the additional assumption that 
media choices are determined by the inner state of the decision maker. Therefore, the MDP assumes that previous media choices and the inner states 
together determine the obtained reward (outcome) from media consumption, which is expected to be optimized by sequential media-selection 
behaviors. This figure gives the example of a media user in an initially neutral mood state. After watching a crime movie, the media user becomes sad 
and therefore obtains a negative reward outcome. Subsequently, the media user decides to watch a comedy movie, which results in a happy mood state 
and a positive reward outcome. This process continues for subsequent selection.
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As an extension of the MC model, the MDP model 
accounts for audience (state) characteristics in addition to 
content characteristics. Let’s return to our movie selection ex
ample. At each timepoint, an individual needs to estimate 
their current mood state (e.g., happy), as well as how much 
reward can be obtained from available movie options (e.g., 
crime movies) and the mood state that will result from select
ing a given movie option (e.g., sad). We might expect, there
fore, that people will select the movie option that they 
estimate will result in the best possible reward outcome 
(Figure 2B). What theoretical mechanisms govern these out
come estimations? We might turn to existing theories suggest
ing that people are hedonistic or utility maximizers. 
Alternatively, the MDP model might provide a foundation 
for computationally formalizing to the growing body of liter
ature examining emotional trajectories (e.g., Keene & Lang, 
2016; Wang & Bailey, 2023) or flows (e.g., Nabi & Green, 
2015) during media use.

Normative modeling: reward learning and 
generalization
The model and its assumptions
One unanswered question arising from the previous section 
is, during sequential media selection, how do people know 
which option leads to the optimal outcome? Answering this 
question requires media users to learn and update the reward 
(Q) function to control the transition policy and reach an op
timal outcome based on their previous media selection. How 
does this learning happen? This question has at least two pos
sible answers, both of which normatively treat people as 
value optimizers. The first specifies how current reward esti
mates are updated based on instances where the same choice 
was previously selected. This is known as RL. The second ap
proach, reward generalization, updates current reward esti
mates based on instances where a different choice was 
previously selected.

Q-learning is a well-known RL process (Watkins, 1989; 
Watkins & Dayan, 1992), which uses a temporal difference 
(TD) algorithm (Sutton & Barto, 2018) to update the reward 
(Q) function. This TD learning process has been well docu
mented, empirically tested, and applied across a wide range 
of applications (Niv, 2009; Watkins & Dayan, 1992). In the 
sequential media-selection domain, the Q-learning process 
has been suggested as the media effect that governs subse
quent media choices (Fisher & Hamilton, 2021). 
Importantly, this RL process helps people optimally control 
their subsequent choices and inevitably introduces a rein
forcement mechanism for their sequential behaviors. Simply 
put, people tend to repeat high-reward choices and avoid 
low-reward choices, recognizing that reward may diminish 
with repeated selection of the same choice (Figure 3A). 
Media users may use this TD-based RL model to make se
quential media choices, where the reward function (Qt) is in
dependently updated after experiencing reward (Rt) for 
selecting a given option (C�) and governed by the learning 
rate parameter (a; Equation 9). 

Qtþ1 C�ð Þ ¼ Qt C�ð Þ þ a Rt � Qt C�ð Þ
� �

: (9) 

However, options in sequential media selection often in
clude novel content; that is, media options that have never 
been experienced before. In TD-learning, the reward value 
(Rt) of media options (Ct) can only be estimated if an option 

has been experienced before. Without satisfying this require
ment, the TD-learning algorithm cannot estimate the reward 
function (Qt). Thus, a media user needs an alternate ap
proach for estimating the reward of novel options.

One solution for solving this problem is to infer the reward 
of a novel option by generalizing from the reward of a known 
option (Figure 3B; Wu et al., 2018). A common method to 
deal with the reward estimation of novel options is to use a 
function approximator, instead of an exact matching of given 
options and previous choices (Tesauro, 1992). Thus, similar 
to the value function for static media decisions proposed in 

Figure 3. RL models specify that people can learn from previous media- 
selection experiences. For example, consider an individual selecting from 
different movies that vary in valence and arousal. Conceptually, each 
movie can be represented as a cell in a discrete array of genres or a two- 
dimensional matrix that encodes valence and arousal. For RL (A), each 
movie choice is associated with a specific reward outcome. After 
choosing a movie and obtaining a high reward outcome, an individual 
learns that this movie is likely to elicit a similar reward on subsequent 
rewatching. However, the magnitude of this reward may be reduced 
each time the movie is rewatched. For reward generalization (B), the 
individual is able to make estimations about the reward value associated 
with other unwatched movies such that similar unwatched movies are 
likely to generate a reward similar to the watched movie. Importantly, 
however, the expected reward magnitude of unwatched movies 
decreases as the similarity from the watched movie decreases. Media 
options can be represented as data points in a semantic space (C) 
depending on research questions and theoretical framework. For 
instance, books can be embedded in a high-dimensional semantic space 
constructed using the book summaries. Incorporating a transformer 
language model, books can be embedded in a 381-dimension space 
(reduced to two dimensions using principal component analysis) in a way 
such that similar books are close to each other while dissimilar books are 
further away from each other.
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Equation (1), it is possible to specify the reward function (Q) 
as the expected value (E) of a linear function (Equation 10; 
Mnih et al., 2013) of state features (Fs) and choice fea
tures (Fc). 

QðC; SÞ ¼ E
X

bcFC þ bsFs þ bc;sFcFs

� �
: (10) 

In this model, b is the free linear coefficient for each pa
rameter. This approximation function informs the reward 
function (Q) for the unknown media option based on the 
similarity of its features to a known media option’s features. 
The assumption is that similar media options yield similar 
rewards and dissimilar options yield dissimilar rewards.

Equation (10) specifies a linear approach for reward generali
zation, but nonlinear approaches are also possible 
(Equation 11). In fact, research demonstrates that people use a 
nonlinear Gaussian Process model to generalize the reward of a 
known option to a novel option (Schulz et al., 2019; Wu et al., 
2018). Formally, the Gaussian Process (GPð�))5 model general
izes the reward of known options (QðCÞ) to novel options 
QðC�Þ, based on feature similarity between options kðC�; CÞ. 

QðC�Þ ¼ GP½QðCÞ; kðC�; CÞ�: (11) 

The model as applied to sequential media selection
How might we use RL and reward generalization models to 
explain sequential media selection? Consider an individual 
making sequential decisions on which movie to watch. The 
RL model could be used to demonstrate the sequential selec
tion of different movie genres (e.g., action, comedy, action, 
romantic, thriller) as shown in Figure 3A. After watching an 
action movie, the individual updates their estimate of the re
ward value of action movies as regulated by the TD-learning 
algorithm. If a high reward value is experienced after watch
ing the action movie, the reward function for action movies 
will increase. If a low reward value is experienced, the reward 
function will update the estimate of action movies corre
spondingly. With this normative RL mechanism, an individ
ual can gradually optimize their selection strategy by 
adjusting their sequential movie selection based on previous 
experiences. This hypothesis has not yet been empirically 
tested in sequential movie selection contexts. However, this 
hypothesis has received support in social media contexts such 
that an RL mechanism appears to govern the frequency of so
cial media posting (Lindstr€om et al., 2021).

Distinct from the RL model, which considers movies to be 
embedded in a discrete space (like genres), reward generaliza
tion assumes that options are embedded in a continuous 
high-dimension space. As a result, reward generalization is 
capable of explaining sequential media selection with higher 
granularity because reward estimates can be extended to un
known options based on the similarities between options. For 
instance, as shown in Figure 3B, assuming movies are embed
ded in a two-dimensional space (i.e., valence and arousal), af
ter experiencing a specific movie choice (neutral valence and 
moderate arousal) with high reward, the reward generaliza
tion mechanism will update reward estimates of every possi
ble option with the Gaussian process function, in a way such 
that similar movie options (with respect to valence and 
arousal) will increase to a higher extent, and dissimilar movie 
options will increase to a lower extent.

In practice, media options are likely embedded in a high- 
dimensional space that extends beyond arousal and valence. 
This would certainly be consistent with existing theorizing 
(e.g., information utility, hedonism, U&G). Reward generali
zation is sufficiently flexible to account for this high- 
dimensional space (Figure 3C). As a result, this normative 
model provides a mechanistic account for how people make 
sequential selections that integrates with existing theoretical 
explanations for why people select sequential media choices 
in a reward-optimizing way.

Normative modeling: exploration vs. exploitation
The model and its assumptions
Importantly, learning processes, including RL and reward 
generalization, are unable to fully resolve difficulties associ
ated with estimating the reward of novel options. This is par
ticularly true in new or uncertain contexts. Media content are 
constantly changing (e.g., new music albums, new moves, 
new streaming videos, or breaking news). Thus, the difficulty 
of state estimation and choice estimation grows as time 
goes by.6

To ensure optimal media selection in a changing and uncer
tain world, media users need to frequently sample novel and 
uncertain media options. This sampling aids in learning and 
reduces uncertainty associated with novel media. Media users 
face a tradeoff between consuming known media and un
known media. More specifically, this tradeoff is between 
choosing currently known options with high reward through 
reinforcement or generalization (exploitation) and sampling 
unknown options with high uncertainty (exploration). This is 
known as the famous exploration vs. exploitation (EE) di
lemma in Figure 4A (Daw et al., 2006; Sutton & 
Barto, 2018).

The basic idea of the EE dilemma is that, at any given mo
ment, the optimal strategy for the highest reward is to exploit 
the most rewarding choice (exploitation); however, it is still 
necessary to regularly explore alternative options (explora
tion) in order to gain information about the environment 
(Cohen et al., 2007; Daw et al., 2006). Consider a simple ex
ample, choosing a song to listen to. A person might listen to 
their favorite song from their favorite artist (exploitation) or 
might listen to a new song from that artist’s latest album (ex
ploration). Selecting the new song is associated with a level of 
uncertainty about the outcome (will the person like or dislike 
the new song). However, selecting the new song also helps 
the individual obtain knowledge about the new song and the 
artist. Both pieces of information are vital for guiding fu
ture selection.

There are two strategies for addressing the EE problem. 
The first strategy is random exploration, which requires the 
decision maker to make a random choice within the option 
space (Watkins, 1989). An example of random exploration is 
making choices based on a softmax function (similar to 
Equation 7) of expected rewards (Equation 12). Here, higher 
value options have a higher probability of being chosen. The 
parameter b determines the rate of exploration by controlling 
the spreading of the probability distribution of choices. 
Exploration is maximized when b! 0, which results in a 
uniform distribution where all options have equal probability 
of being selected. By comparison, exploitation occurs as 
when b !1. This results in a deterministic distribution 
where only the highest reward option is selected. 
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PðSelecting option kÞ ¼ expðbVkÞ=
Xn

i¼1
ðexpðbViÞÞ:

(12) 

The second strategy is directed exploration, where the deci
sion maker makes choices with a bias toward novelty, uncer
tainty, and information (exploration; Gittins, 1979). This 
approach can be implemented by adding an information bo
nus to the reward function (Q; which was first introduced in 
Equation 6). A well-known algorithm is the upper confidence 
bound (UCB) algorithm (Auer et al., 2002), which adds a 
term that is linearly related to the uncertainty (v) of options 
relative to the reward (Q) function. Thus, the updated reward 
(Q) function can be expressed as in Equation (13), where c 
represents the linear parameter controlling exploration. As 
c!1 bias toward the exploration of uncertain 
choices increases. 

Q Ct; Stð Þ ¼ E Rt jCt; Stð Þ þ c vc : (13) 

The model as applied to media selection
A common way to study the EE problem is with a two-armed 
bandit task (Sutton & Barto, 2018). In this task, participants 
sequentially choose from one of two gambling machines, 
each with a different probabilistic reward function. 
Completing the task requires participants to balance exploi
tation (choosing the machine with the highest expected re
ward) and exploration (choosing the machine with the 
highest uncertainty). Research shows that people use the 
UCB algorithm to guide their selection in lab-based bandit 
tasks (Wu et al., 2018) and real-world sequential selections 
(Schulz et al., 2019). Therefore, we hypothesize that people’s 
sequential media behaviors will also follow this exploration 
strategy, such that people are biased toward high-uncertainty 
media options.

In media contexts, this exploration–exploitation strategy has 
already proven to be successful in recommending news (Li et 
al., 2010) and music (Wang et al., 2014). Moreover, 

preliminary results on observational music listening data al
ready suggest that people use the UCB algorithm during sequen
tial music selection (Gong & Huskey, 2022). This finding could 
be experimentally confirmed using a bandit-style task. In this 
example, a participant might be asked to sequentially choose be
tween a known song (exploitation) or a novel song (explora
tion). Their choice data would then be fit using the random and 
UCB models. The better fitting model would be selected as the 
one that best explains the exploration/exploitation strategy used 
(Vandekerckhove et al., 2015).

This approach could be extended to see if the UCB algo
rithm governs different types of media selection (e.g., do 
people show a similar bias toward novelty when selecting 
non-music media?). Questions related to genre preference for
mation and the influence of genre on selection (e.g., Liang & 
Willemsen, 2021) might be investigated using EE models. 
Moreover, people’s media task-switching and multitasking 
behaviors have also been found to be determined by the EE 
trade-off mechanism (Fisher & Hamilton, 2021; Wiradhany 
et al., 2021). In sum, the EE dilemma may prove quite gener
ative for future sequential-media-selection research.

Normative modeling: OFT
The model and its assumptions
An alternative approach to solve the EE problem is proposed 
by OFT (Pyke, 1984). OFT describes a patchy environment. 
A patch represents a resource, with varying levels of reward, 
that can be repeatedly selected. The reward associated with 
selection within a given patch is called the foraging rate. In 
this environment, individuals must sequentially choose to ex
ploit a current patch or explore a new patch (Figure 4B). The 
critical difference between OFT and EE is that OFT recog
nizes that continued exploitation is not without cost (e.g., the 
resource is consumed, the resource becomes less rewarding 
over time). At the same time, sampling a new patch is not 
without cost (e.g., energy, risk, uncertainty, time). OFT pro
vides a solution for addressing this diminishing foraging rate 
vs. switching cost tradeoff. According to the marginal value 
theorem, an individual will switch to a new patch when the 
instantaneous foraging rate of staying in the same patch 
decreases to be equal to the average foraging rate of the entire 
environment (Pirolli & Card, 1995; Pyke, 1984).

The marginal value theorem, which mechanistically gov
erns the decision to explore or exploit, can be operationally 
integrated into the UCB model (Equation 13) by adding two 
additional terms (Equation 14). The first, (GPðNcÞ) 
where GPð�Þ denotes the Gaussian generalization process, 
punishes the repeatedly chosen options and Nc denotes choice 
repetition. This term reflects the opportunity cost of staying 
within a given patch. This second term, dðCt; Ct� 1Þmeasures 
the distance (d) between patches.7 This term punishes long- 
distance jumps between choices, thereby reflecting the 
switching cost. 

QðCt; StÞ ¼ EðRt j Ct; StÞ þ c vct � GPðNcÞ

� dðCt; Ct� 1Þ: (14) 

The model as applied to media selection
OFT was originally developed to understand how animals 
forage for food, but it has been extended into other non-food 
foraging contexts. For instance, people’s information search 
behavior has been shown to resemble animal foraging 

Figure 4. The EE model (A) addresses the dilemma between choosing a 
well-known high reward media option or choosing a novel media option. 
For example, a rock music fan might choose to listen to classical music 
due to curiosity and exploration motivation. By comparison, foraging 
models (B) specify an individual’s need to balance between staying in the 
current media patch or leaving to a distant media patch. For example, 
after listening to their favorite album by their favorite musician, an 
individual might listen to a new album by a new musician in order to 
counteract boredom and minimize potential fatigue with their favorite 
musician’s album.
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patterns (Pirolli, 2007; Pirolli & Card, 1995). Information 
foraging theory (IFT), an extension of OFT, conceptualizes 
information as a resource that is distributed in a patchy way. 
And, just like OFT, IFT considers how people decide to stay 
in the current information patch or leave and explore new in
formation patches. Within an information context, the forag
er’s decision to exploit a given information patch is governed 
by the diminishing reward associated with sequentially select
ing a given resource (e.g., people become bored by repeatedly 
watching the same TV show). Similarly, leaving an informa
tion patch is associated with risk and switching costs (e.g., 
people might choose a low-value option in a distant patch, 
there is a high cognitive cost when switching to a highly dis
similar patch).

Media researchers have already started using OFT as a 
framework for investigating how people process media mes
sages (Bailey et al., 2021a), and their decision-making post 
media exposure (Bailey et al., 2021b). Within sequential 
media-selection contexts, OFT has been shown to account 
for people’s computer mouse movement (Jaiswal et al., 
2020), web-browsing browsing behavior (Goodwin et al., 
2012), and web-search behavior (Liu et al., 2010; Pirolli & 
Card, 1995). A common theme seems to be emerging. When 
the individuals “stay” in a particular media patch for a long 
period of time, the reward value from that patch decreases to 
a point where the reward of staying is comparatively lower 
than the reward associated with “leaving” for alternative me
dia patches. This mechanism offers an explanation for, and 
computational formalization of, several theoretical questions, 
including media boredom, shifting media preferences, and 
curiosity-driven information seeking.

Discussion
Explaining media selection is one of the oldest areas of in
quiry for media scholars. Existing theories usually focus on 
audience and content characteristics and investigate static 
media selection in snapshot selection scenarios (Hartman, 
2009). Nascent theorizing and empirical work has laid a 
foundation for understanding sequential selection (e.g., 
Shade et al., 2015; Wang, 2014; Wang et al., 2006, 2011). 
Research exploring this important question has not yet 
reached wide scale adoption. Therefore, and even though 
today’s media landscape increasingly features opportunities 
for sequential selection, our theory and research has failed to 
keep up. We know very little about how sequential dependen
cies govern media selection and largely lack theoretical and 
empirical frameworks for examining these dependencies. In 
this article, we articulate fundamental definitions of sequen
tial media selection, showcase theoretical frameworks and 
computational formalizations for investigating this problem, 
and demonstrate how our approach can be used to test and 
extend existing media-selection theory.

Value-based decision-making as an 
integrative framework
Regardless of whether static or sequential, media selection 
can be analyzed as a type of value-based decision making 
(Rangel et al., 2008), where (1) individuals make media 
choices based on the valuation of given media options, (2) the 
value of each media option can be estimated using functions 
that account for audience and content characteristics, and (3) 
individuals select media in a way that aims to optimize 

reward by choosing high-value options and avoiding 
low-value options. In short, people are expected to probabil
istically select the most rewarding media. This value-based 
decision-making framework is a parsimonious integrative 
theoretical framework that can coordinate existing empirical 
media-selection theory and research (e.g., mood manage
ment, information utility, intrinsic motivation, U&G) with 
the larger decision-making literature (e.g., Fisher & 
Hamilton, 2021). It also provides a rigorous methodology 
where researchers can formally quantify people’s media pref
erences, evaluate the fit of formal models that explain media 
selection, and scrutinize sequential media selection in differ
ent communication contexts.

This article focuses on content and audience characteristics 
as mechanistic drivers of value-based decision making. The 
beauty of specifying sequential media selection in terms of 
value-based decision making is that it helps integrate dispa
rate literatures, including ones that have not been considered 
extensively in our article. As one example, we have ignored 
medium in our theoretical integration. Media richness theory 
(MRT; Daft & Lengel, 1986) offers potentially fruitful inte
grative potential. MRT considers how medium characteristics 
influence communication fidelity (e.g., equivocality, uncer
tainty) which ultimately governs medium selection. Research 
has examined how context characteristics and medium affor
dances influence medium selection and constrain MRT (e.g., 
Ahn et al., 2022; Davis and Chouinard, 2016 ; Evans et al., 
2017; Fox & McEwan, 2017). With sufficient theoretical de
velopment, context characteristics and medium affordances 
could be cast in terms of value. For instance, the medium 
affordances of video-conferencing may result in lower equiv
ocality and uncertainty relative to text messaging. But con
text characteristics also matter. A text message may be more 
appropriate in a noisy environmental context relative to a 
video-conference. In terms of value, it could be that value 
increases as equivocality and uncertainty decrease (medium 
affordances) and value decreases as environmental noise 
increases (context characteristics). If so, then it should be pos
sible to integrate these two value estimates in a computa
tional decision function to determine which medium an 
individual will select. Of course, additional theory building is 
necessary to integrate context characteristics, medium affor
dances, and a (as of yet unspecified) computational decision 
function. Fortunately, a rich empirical literature makes such 
an integration theoretically possible.8

Sequential media selection as MDP
These sequential properties can be simply and descriptively 
theorized as conditional probabilistic dependencies among 
consecutive choices; formalized using a MC model. In a more 
complicated way, under the value-based decision-making 
framework, sequential media selection can be considered as a 
MDP, where (1) media choices depend on current value esti
mates for each media option, (2) the value of options depends 
on media options (content characteristics) and current mental 
state (audience characteristics), (3) mental state changes 
depending on previous media choices, and (4) an individual’s 
aim is to accumulate and optimize rewards from sequential 
media selection.

Learning and exploration
To optimize long-term rewards from media choices, people 
need to learn from previous experiences and update their 
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knowledge for high- or low-reward options. Thus, the tempo
ral dependencies among sequentially selected media can be 
identified as a process that is constantly learning from previ
ous choices in order to forecast the value of future choices 
and estimate novel options through reward generalization. In 
addition, people need to explore novel media options that 
they are unfamiliar with to obtain knowledge of similar 
options, compared with making choices of exploiting well- 
known high-reward options. Finally, people need to make 
decisions between staying in the current media patch or leav
ing for distant patches as governed by a foraging mechanism. 
Thus, people’s sequential media choices will balance the ben
efit vs. cost of staying vs. leaving.

Explaining and predicting complex 
media behaviors
Computationally modeling communication is not new. 
Although less common in the discipline, computational mod
els have been applied in a number of contexts (e.g., Chung 
et al., 2012; Chung & Fink, 2022; Fink, 1993; Huskey et al., 
2020; Schramm, 1955), including people’s media selection 
(Wang et al., 2006, 2011, 2014). This is because there are 
several benefits that come when we use computational mod
els (Guest & Martin, 2021; Smaldino, 2017; van Rooij & 
Baggio, 2021), especially when investigating domain-general 
media-selection phenomenon (Fisher & Hamilton, 2021; 
Gong et al., 2023), and particularly when we consider the 
time dimension in sequential media selection with complex 
sequential dependencies between granular media choices. 
First, the computational models (and their corresponding for
mal theoretical frameworks) introduced in this study help 
researchers tackle the complexity of the sequential media- 
selection process, thereby increasing our ability to explain 
and predict (Fisher & Hamilton, 2021; Guest & Martin, 
2021; Huskey et al., 2020; Smaldino, 2017, 2020; van Rooij 
& Baggio, 2021). Second, this approach provides a bridge for 
linking theory and practice. Today’s state-of-the-art recom
mender systems use theory-blind predictive models to provide 
data-driven media recommendations (Zhang et al., 2020). 
Although data-driven predictive accuracy seems to be reach
ing an asymptotic upper bound and there are increasing calls 
for integrating content and audience characteristics into data- 
driven predictive models (Tkalcic & Chen, 2015). Studies us
ing computational models that account for the content and 
audience characteristics that govern sequential media selec
tion can help bridge the gap between academics and the me
dia industry. Third, an integrative value-based decision- 
making framework with computational modeling provides 
principled methods (i.e., measuring prediction accuracy of fu
ture media choices) to distinguish, compare, and integrate 
different theories (Hofman et al., 2021), which guides the fal
sification or updating of existing media-selection theories. 
Finally, the exploration of complex relationships between 
theoretical constructs in sequential media selection might 
promote the discovery of novel constructs and measurements 
for media behaviors. Recent technological advances generate 
tremendous empirical media-selection (meta)data 
(e.g., music listening trajectories on Spotify, watch histories 
on YouTube) and opportunities for the scientific investiga
tion of the nature of human selection behavior. The modeling 
methods described in this article will help researchers grasp 
these opportunities, exploit modern digital media data, and 
initiate novel research and theorizing.

Conclusion and suggestions
We propose an integrative theoretical framework, value- 
based decision-making, to investigate the sequential 
dependencies in media selection. Utilizing this framework, we 
proposed five mechanisms of increasing theoretical sophisti
cation (MC, MDP, reward generalization, EE, foraging) to 
explain and predict future media selection based on previ
ously selected media. Of course, the five mechanisms intro
duced here are surely incapable of fully describing the 
complete picture of the sequential media-selection processes 
and should be considered as a primer for initial empirical 
work. One open question is how well these selection mecha
nisms generalize to different media contexts. Researchers 
might naturally ask “which model should I start with?” The 
answer to this is contingent, at least in part, by the research 
question and the classic distinction between prediction and 
explanation (Yarkoni and Westfall, 2017) . If data-driven 
prediction is the primary ambition, then descriptive models 
(MC and MDP) offer an excellent starting point. 
Alternatively, if explanation is the primary ambition, we sug
gest starting with a normative model (RL, EE, and OFT).

Given the domain generality of these models, our intuition 
is that each should fit rather well. However, we recognize 
that this is ultimately an empirical question. Generally, these 
empirical questions can be analytically tested through model 
building, model evaluation, model comparison with either 
lab-collected experimental behavioral data or naturalistic ob
servational media choices data from media industries. As a 
theoretical piece, we do not provide empirical evidence or 
illustrations for the detailed methodology, but we redirect in
terested readers to existing methodological works (Daw, 
2011; Farrell & Lewandowsky, 2018; Gong & Huskey, in 
press; Wilson & Collins, 2019;) for detailed explanatory 
tutorials to develop future studies.

We hope that researchers keep two premises in mind when 
investigating sequential media selection: embrace stochastic
ity and eschew stationarity (see also Brinberg & Lydon- 
Staley, 2023). First, stochasticity is essential for understand
ing sequential media selection. Why? Media selection is a 
generative process whereby individuals produce observable 
media selections that are distributed probabilistically. 
Treating media selection as a static event ignores the stochas
tic nature of media selection, but makes statistical modeling 
via data aggregation (e.g., frequency count, mean) easier. 
However, these aggregation methods assume choice observa
tions are independent, which violates the sequential depen
dencies specified in Equation (4). In order to understand the 
generative mechanisms of sequential media selection, 
researchers need to embrace the stochasticity and formalize 
choice behaviors with probabilistic models that specify how 
previous media selection influences the probability distribu
tions of future selection.

Second, media selection is not a stationary process. 
People’s movie preferences may change over time. They 
might feel bored after listening to their favorite song on re
peat. They may switch between exploring novel news sources 
and exploiting informative news sources. Thus, researchers 
must eschew stationarity and properly specify the dynamic 
mechanisms that govern sequential media selection. Our 
MDP example demonstrates that people’s mental states are 
non-stationary, contingent on previous media selection, and 
result in time-varying selection dynamics. Similarly, people’s 
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reward estimates of media options are non-stationary and 
change through RL or reward generalization processes. 
People’s decision strategies are non-stationary and switch be
tween exploration and exploitation. Each of these theoretical 
specifications offers a unique way to explain the dynamic and 
non-stationary nature of sequential media choices. We hope 
that these recommendations jumpstart a new era of fruitful 
research investigating sequential media selection.
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Notes
1. We recognize that other mechanisms have been proposed and tested. 

Our ambition is not to exhaustively review all existing mechanisms, as 
this has already been done (e.g., Hartmann, 2009). Instead, we specify 
select mechanisms as a theoretical jumping-off point for our main am
bition, the computational modeling of sequential media selection.

2. In this equation, the fifth term parameterizes MMT’s valence hypothe
sis (persons in aversive states will prefer hedonically positive stimuli) 
and the sixth term parameterizes MMT’s excitatory homeostasis hy
pothesis (persons in states of extreme over- or under stimulation will 
act to return to a baseline).

3. We note that the main goal of this article is to theoretically specify sev
eral domain-general mechanisms that govern sequential media selec
tion. Given our focus on content and audience characteristics, we 
examine the temporal dependencies between previously selected and 
currently selected media.

4. Both the semantic and temporal dimensions exhibit a time-varying 
structure. Communication researchers have largely focused on semantic 
characteristics of media selection. Our efforts in this article focus on the 
semantic and temporal dimensions, which we understand as an addi
tional theoretical contribution.

5. This center dot was intentionally selected to represent the dot product 
of scalar multiplication. Remember that scalars only quantify magni
tude whereas vectors quantify both magnitude and direction.

6. Media channels also change, but less rapidly. Additional theorizing 
might focus on content distribution channels.

7. Remember that, as shown in Figure 3C, distance can be represented in 
semantic space.

8. We would like to thank an anonymous reviewer for encouraging us to 
consider the theoretical generality of value-based decision making and 
its relationships with other mechanisms of media and me
dium selection.
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